Internet 
Українська  English  Русский  

DOI: https://doi.org/10.31071/kit2018.14.07


Inventory reference ISSN 1812-7231 Klin.inform.telemed. Volume 13, Issue 14, 2018, Pages 52–68


Author(s) O. V. Kulyk1, O. Yu. Mayorov2, 3


Institution(s)

1Scientific-practical Center of Neurorehabilitation "Nodus", Brovary, Ukraine

2Kharkiv Medical Academy of Postgraduate Education, Ukraine

3Institute of Medical Informatics and Telemedicine LTD, Kharkiv, Ukraine


Article title Informative indicators of quantitative non-linear analysis of EEG in patients with post-comatose disorders of consciousness after severe head injury in the dynamics of its recovery


Abstract (resume)

Introduction. The study is devoted to nonlinear multidimensional analysis of EEG in patients with post-traumatic post-comatose disorders of consciousness, depending on the stages of its recovery according to T. A. Dobrokhotova (1985) during the restoration treatment and rehabilitation.

The scope and methods of research. The study is based on the analysis of 220 patients with post-coma disorders of consciousness after severe head traumatic injury. Linear and nonlinear EEG analysis was performed using the software package NeuroResearcher®Innovation Suite® (modules Basic®, Spectra® and Chaos®) (Version 18.5).

Results. The paper reveals the features of the key non-linear properties of the EEG, and analyzes the little-studied and controversial issues regarding highly informative indicators that most correlate with the dynamics of the transition to higher stages of impaired consciousness syndromes.
A significant predominance of diagnostic informativity of nonlinear multidimensional EEG analysis is proved compared to traditional linear correlation and spectral analysis, especially in identifying and objectifying the signs of integrative brain activity with syndromes of repressed consciousness. The results obtained indicate a significantly higher sensitivity of this method in predicting the release to higher stages of restoration of consciousness.
Findings. To improve the performance of electroencephalographic diagnostics, as well as to increase the reliability of the EEG parameters obtained in patients with post-comatose impairment of consciousness after severe head traumatic injury, regardless of the stage of recovery of consciousness during restoration treatment and rehabilitation. It is always recommended to supplement the routine (visual) and quantitative linear analysis of qEEG on multidimensional nonlinear analysis, with mapping primarily of entropy values, dimension of neurodynamics systems (complexity), attractors' parameters, and also multifractal properties of EEG. This enhances not only the understanding of the current functional state of the brain, but also complements the diagnostics with an objective prognostic tool.


Keywords traumatic brain injury, post-comatose disorders of consciousness, EEG patterns, neurodynamics, nonlinear EEG analysis, deterministic chaos, attractor, Kolmogorov-Sinai entropy


References

1. Aleksandrov M. V. Possibilities of quantitative EEG in assessing the level of depression of consciousness: ways to overcome the methodological crisis. Materialy II-y Vserossiyskoy nauchno-prakt. Konfer. "Kolichestvennaya EEG i neyroterapiya". 27-29 aprelya 2009 [Proc. of the 2-nd All-Russian Scientific Practical Conference "Quantitative EEG and Neurotherapy". April 27-29, 2009], 2009, SPb Publ., p. 5. (In Russ.).

2. Andreev Yu. V., Dmitriev A. S., Kuminov D. A. Chaotic processors. Uspehi sovremennoj radioelektroniki [Successes of modern rdioelectronics], 1997, no. 10, pp. 50-77. (In Russ.).

3. Dmitriev A. S. Chaos and information processing in nonlinear dynamic systems. Radiotehnika i elektronika [Radio engineering and Electronics], 1993, vol. 38, no. 1, pp. 1–24. (In Russ.).

4. Dmitriev A. S., Kuminov D. A. Chaotic scanning and pattern recognition in neural-like learning systems. Radiotehnika i elektronika [Radio engineering and Electronics], 1994, vol. 39, pp. 633-641. (In Russ.).

5. Dobrohotova T. A., Bragina N. N. The nature of functional symmetry – the asymmetry of the human brain. Problemy nejrokibernetiki. Mehanizmy funkcionalnoj mezhpolusharnoj asimmetrii mozga [Neurocybernetics problems. Mechanisms of functional interhemispheric asymmetry of the brain]. ELISTA Publ, 1985, pp. 3–10. (In Russ.).

6. Mayorov O. Yu., Glukhov A. B., Fenchenko V. N., Prognimak A. B. The implementation of the method of displacement using the estimated dimensions of the axes of the attractor of a dynamic system Zn. Kibernetika i vychislitel'naya tekhnika [J. Cybernetics and Computer Engineering], 2007, iss. 153, pp. 3-9. (In Russ.).

7. Mayorov O. Yu., Fenchenko V. N. Researching of the brain bioelectrical activity from positions of multidimensional linear and nonlinear EEG analysys. Zh Klinicheskaya informatika i Telemedicina [J. Clinical Informatics and Telemedicine], 2008, vol. 4, iss. 5, pp. 12-20. (In Russ.).

8. Mayorov O. Yu., Fenchenko V. N. About the evaluation of the deterministic chaos parameters at bioelectric activity research of the brain (EEG). Zh. Klinicheskaya informatika i Telemedicina [J. Clinical Informatics and Telemedicine], 2006, vol. 3, iss. 4, pp. 37-46. (In Russ.).

9. Mayorov O. Yu., Fenchenko V. N. Multifractal analysis in the study of brain bioelectric activity. Zn. Kibernetika i vychislitel'naya tekhnika [J. Cybernetics and Computer Engineering], 2015, iss. 181. pp. 81-94. (In Russ.).
10.15407/kvt181.01.070

10. Starchenko I. B., Reznichenko A. A., Budko R. Yu. Modeling of electrical processes in the human brain using non-linear dynamics methods. Prikaspijskij zhurnal: upravlenie i vysokie tehnologii [Caspian Journal: management and high technology], 2013, vol. 2, no. 22, pp. 80-88. (In Russ.).

11. Sharova E. V., Zaitsev O. S., Shchekuteva G. A. et al. EEG and EP in predicting the development of unconscious states after a severe injury. DonNMU Publ., 2008, vol. 4, pp. 82-84. (In Russ.).

12. Bashore T., Martinerie J., Albano A., Zimmerman I., Mess A. Dynamics of brain electrical activity. Brain Topography, 1989, no. 2, pp. 99–118.
https://doi.org/10.1007/BF01128848
PMid:2641481

13. Babloyantz A., Destexhe A. Low dimensional chaos in an instance of epilepsy. Proc Nat. Acad. Sci. USA, 1986, iss. 83, pp. 3515–3517.
https://doi.org/10.1073/pnas.83.10.3513
PMid:3085091
PMCid:PMC323547

14. Babloyantz A., Destexhe A. The Creutzfeldt–Jacob disease in the hierarchy of chaotic attractor. In: Markus M., Muller S., Nicolis G., eds. From chemical to biological organization, Berlin. Springer, 1987, pp. 307–316.
https://doi.org/10.1007/978-3-642-73688-9_33

15. Babloyantz A. Chaotic dynamics in brain activity. In: Basar E., ed. Dynamics of sensory and cognitive processing by the brain. Berlin, Springer, 1988, pp. 196–202.
https://doi.org/10.1007/978-3-642-71531-0_12

16. Thatcher R. W., Biver C., McAlaster R., Salazar A. Biophysical Linkage between MRI and EEG Coherence in Closed Head Injury. NeuroImage, 1998, vol. 8, iss. 4, pp. 307-326.
https://doi.org/10.1006/nimg.1998.0365
PMid:9811550

17. Boccaletti S., Grebogi C., Lai Y. C., Mancini H., Mazaet D. The control of chaos: Theory and applications. Physics Reports, 2000, iss. 329, pp. 108–109.
https://doi.org/10.1016/S0370-1573(99)00096-4

18. Peng C.-K., Havlin S., Stanley H. E., Goldberger A. L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. CHAOS, 1995, vol. 5, no. 1, pp. 82-87.
https://doi.org/10.1063/1.166141
PMid:11538314

19. Destexhe A., Sepulchre J. A., and Babloyantz A. A comparative study of the experimental quantification of deterministic chaos. Phys. Lett. A, 1988, vol. 132, pp. 101–106.
https://doi.org/10.1016/0375-9601(88)90262-9

20. Dong-yu Wu, Gui Cai, Zorowitz R. D., Ying Yuan, Jie Wang, Wei-qun Song. Measuring interconnection of the residual cortical functional islands in persistent vegetative state and minimal conscious state with EEG nonlinear analysis. Clin. Neurophysiology, 2011, vol. 122, iss. 10, pp. 1956-1966.

21. Dong-yu Wu., Gui Cai., Ying Yuan., Lin Liu., Guang-qing Li., Wei-qun Song., Mao-bin Wang. Application of nonlinear dynamics analysis in assessing unconsciousness: A preliminary study. Clin. Neurophysiology, 2011, vol. 122, iss. 3, pp. 490-498.
https://doi.org/10.1016/j.clinph.2010.05.036
PMid:20719560

22. Dunkin J. J., Leuchter A. F., Newton T. F., Cook I. A. Reduced EEG coherence in dementia: state or trait marker? Biol. Psychiatry, 1994, vol. 35, pp. 870–879.
https://doi.org/10.1016/0006-3223(94)90023-X

23. Fell J., Rochke J., Beckmann P. Nonlinear analysis of sleep EEG data in schizophrenia: calculation of the principal Lyapunov exponent. Psychiatry Res., 1995, iss. 56, pp. 257–269.
https://doi.org/10.1016/0165-1781(95)02562-B

24. Freeman W. J. Simulation of chaotic EEG pattern with a dynamic model of the olfactory system. Biol. Cyb., 1987, vol. 56, iss. 2-3, pp. 139-150.
https://doi.org/10.1007/BF00317988
PMid:3593783

25. Freeman W. J., Yao Y. and Burke B. Central pattern generating and recognition in olfactory bulb: a correlation learning rule. Neural Networks, 1988, vol. 1, pp. 277-278.
https://doi.org/10.1016/0893-6080(88)90001-9

26. Yoong Y. and Freeman W. J. Model of Biological Pattern Recognition with Spatially Chaotic Dynamics. Neural Networks, 1990, vol. 3, no. 2, pp. 153–170.
https://doi.org/10.1016/0893-6080(90)90086-Z

27. Glass L., Michel R.G., Mackey M., Shrier A. Chaos in neurobiology. IEEE Trans. Sys. Man & Cybernatics, 1983, vol. 13, iss. 5, pp. 790–798.
https://doi.org/10.1109/TSMC.1983.6313073

28. Gosseries O. et al. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state. Functional Neurology, 2011, vol. 26, iss. 1, pp. 1-6.

29. Hornero R., Alonso A., Jimero N., Jimero A., Lopez M. Nonlinear analysis of time series generated by schizophrenic patients. IEEE Eng. Med. Biol., 1999, P. 18, pp.84–90.
https://doi.org/10.1109/51.765193
PMid:10337567

30. Jeong Jaeseung J., Chae Jeong–Ho, Kim Soo Yong, Han Seol–Heui. Nonlinear Dynamic Analysis of the EEG in Patients with Alzheimer's Disease and Vascular Dementia. Clin. Neurophysiology, 2001, vol. 18, iss. 1, pp. 58-67.
https://doi.org/10.1097/00004691-200101000-00010
PMid:1129094

31. Lin M., Chan H., Fang S. Linear and nonlinear EEG indexes in relation to the severity of coma. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2005, iss. 4, pp. 580-4583.
https://doi.org/10.1109/IEMBS.2005.1615489
PMid:17281259

32. Mayer G., Layne S. C. Dimensionality of the human encephalogram. In perspectives in Biological Dynamics and Theoretical Medicine. Annals NY Acad. Sci. Ed. by: Koslow S. H., Madell A. J., Shlessinger M. F., 1987, pp. 504–507.
https://doi.org/10.1111/j.1749-6632.1987.tb48726.x

33. Mayorov O. Yu., Fenchenko V. N. Searching for 'neuromarkers' characteristic for pathologic changes in schizophrenia by using the scaling indices of the cerebral bioelectrical activity. European J. of Biomed. Informatics (EJBI), 2018, vol. 14, iss. 1, pp. 67-74.
https://doi.org/10.24105/ejbi.2018.14.1.11

34. Thakor N. V., Tong S. Advances in Quantitative Electroencephalogram Analysis Methods. Annual Rev. of Biomed. Engineering, 2009, vol. 6, pp. 453-495.
10.1146/annurev.bioeng.5.040202.121601

35. Jaeseung Jeong, Jeong–Ho Chae, Soo Yong Kim, and Seol–Heui Han. Nonlinear Dynamic Analysis of the EEG in Patients with Alzheimer's Disease and Vascular Dementia. Clin. Neurophysiology, 2001, vol. 18, no. 1, pp. 58 –67.
https://doi.org/10.1097/00004691-200101000-00010
PMid:11290940

36. Rényi A. On measures of information and entropy. Proc. of the 4th Berkeley Symposium on Mathematics, Statistics and Probability. 1960. 1961, pp. 547–561.

37. Skarda C. A. and Freeman W. J. How Brains Make Chaos in Order to Make Sense of The World. Behavioral and Brain Sciences, 1987, vol. 10, pp. 161–195.
https://doi.org/10.1017/S0140525X00047336

38. Spasic S., Culic M., Grbic G., Martac L., Sekulic S., Mutavdzic D. Spectral and Fractal Analysis of Cerebellar Activity After Single and Repeated Brain Injury. Bulletin of Math. Biology, 2008, vol. 70, iss. 4, pp. 1235–1249.
https://doi.org/10.1007/s11538-008-9306-5
PMid:18340496

39. Slobounov S., Sebastianelli W., Hallett M. Residual brain dysfunction observed one year post-mild traumatic brain injury: Combined EEG and balance study. Clin. Neurophysiology, 2012, vol. 123, iss. 9, pp. 1755-1761.
https://doi.org/10.1016/j.clinph.2011.12.022
PMid:22361265
PMCid:PMC3513284

40. Soong A. C., Stuart C. I. Evidence of chaotic dynamics underlying the human alpha-rhythm electroencephalogram. Biol. Cybern., 1989, iss. 62, pp. 55–62.
https://doi.org/10.1007/BF00217660
PMid:2590678

41. Stam C. J. Nonlinear dinamical analysis of EEG and MEG: Review of an emerging field (Invited review). Clin. Neurophysiology, 2005, iss. 116, pp. 2266-2301.
https://doi.org/10.1016/j.clinph.2005.06.011
PMid:16115797

42. Thatchera R. W., Biver C., McAlaster R., Salazar A. Biophysical Linkage between MRI and EEG Coherence in Closed Head Injury. NeuroImage, 1998, vol. 8, iss. 4, pp. 307-326.
https://doi.org/10.1006/nimg.1998.0365
PMid:9811550

43. Vivien B., Langeron O., Riou B. Entropy and bispectral index in brain-dead organ donors. Intensive Care Med., 2007, iss.33, pp. 919-920.
https://doi.org/10.1007/s00134-007-0607-1
PMid:17384926

44. Wendling F., Bellanger J. J., Bartolomei F., Chauvel P. Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol. Cybernetics, 2000, vol. 83, iss. 4, pp. 367–378.
https://doi.org/10.1007/s004220000160
PMid:11039701

45. Wennervirta J., Salmi T., Hynynen M. et al. Entropy is more resistant to artifacts than bispectral index in brain-dead organ donors. Intensive Care Med., 2007, iss. 33, pp. 133-136.
https://doi.org/10.1007/s00134-006-0429-6
PMid:17091243

46. Wu D., Cai G., Yuan Y. et al. Application of nonlinear dynamics analysis in assessing unconsciousness: A preliminary study. Clin. Neurophysiol., 2011, iss. 122, pp. 490-498.
https://doi.org/10.1016/j.clinph.2010.05.036
PMid:20719560


Full-text version http://kit-journal.com.ua/en/viewer_en.html?doc/2018_14/007.pdf