Internet 
Українська  English  Русский  

DOI: https://doi.org/10.31071/kit2019.15.02


Inventory reference ISSN 1812-7231 Klin.inform.telemed. Volume 14, Issue 15, 2019, Pages 35-45


Author(s) O. Yu. Mayorov1, 2, E. A. Mikhailova1, O. Ya. Mikhalchuk1, 2, M. L. Kochina2, I. V. Redka2, A. B. Prognimak2, T. N. Matkovskaya1, D. A. Mitelev1


Institution(s)

1State Institution "Institute for Children and Adolescents Health Protection of the National Academy of Medical Sciences of Ukraine", Kharkiv

2Kharkiv Medical Academy of Postgraduate Education of the Ministry of Health of Ukraine


Article title Criteria ("markers") of depression in teenagers based on the estimation of the state of neurodynamics by methods of nonlinear analysis of EEG and correlation with the CDRS-R scale


Abstract (resume)

Introduction. The issue of prevention, diagnosis, and treatment of various types of depression in children and adolescents is relevant. The study is aimed at finding objective informative biological "markers" that reflect changes characteristic of depression, among which the leading role belongs to the assessment of the indicators of central nervous system activity.

Community sample. Research Methods. 1. We examined 52 depressed patients (35 girls (12,7 ± 1,2) years and 17 boys (14,0 ± 1,3) years. 2. CDRS-R scale estimates of depression. 3. EEG record. 4. EEG analysis — NeuroResearcher® InnovationSuite qEEG system (Mi&T Institute, Ukraine). Kolmogorov–Sinai entropy (eKS) was calculated. 5. Statistical analysis. The statistical difference between the two averages was determined by non-parametric methods (STATISTICA 13.3, Microsoft Excel 2019 software).

Results. A range of eKS values was established in the symmetrical brain regions of depressed adolescents in both sexes during a resting state and intellectual stress. There is no statistically significant difference in average eKS values between resting state and intellectual stress, which may indicate a decrease in patient's adaptability. The statistically significant gender differences in the eKS values were determined: boys had a higher eKS values than girls. A higher eKS values in adolescent boys might indicate their higher adaptive ability in comparison with girls of the same age. A standardized indicator ‘the severity of signs of depression' (SSD) is proposed. The relationship between some depression symptoms from the CDRS-R scale and the neurodynamics state assessment based on eKS were revealed. EEG leads associated with certain depression symptoms were identified.

Conclusion. The identification of relationship between eKS values and depression symptoms can contribute to a more accurate diagnosis, targeted therapy choice, and treatment effectiveness evaluation.


Keywords Depression, qEEG, Nonlinear analysis, Kolmogorov–Sinai entropy


References

1. Depression and Other Common Mental Disorders. Global Health Estimates. WHO. 2017, 24 р.

2. Siever L.J., Davis K.L.Towards a dysregulation hypothesis of depression. Am. J. Psychiatry, 1985, vol. 142, pp. 1017–1031.
https://doi.org/10.1176/ajp.142.9.1017
PMid:2862799

3. Mendlewicz J., Kerkhofs M. Sleep EEG in depressive illness: A WHO collaborative study. Br. Psychiat. 1991, vol. 159, pp. 505–509.
https://doi.org/10.1192/bjp.159.4.505
PMid:1751860

4. Stolla A. L., Renshawa P. F., Yurgelun-Todda D. A., Cohena B. M. Neuroimaging in bipolar disorder: what have we learned? J. Biol. Psychiatry, 2000, vol. 48, iss. 6, pp. 505–517.
https://doi.org/10.1016/S0006-3223(00)00982-3

5. Vyas A., Pillai A.G., Chattarji S. Recovery after chronic stress fails to reverse amygdaloid neuronal system. Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 12, pр. 4280–4285.
https://doi.org/10.1016/j.neuroscience.2004.07.013
PMid:15464275

6. Regier D. A., Narrow W. E., Kuhl E. A., Kupfer D. J. The conceptual development of DSM V. Am. J. Psychiatry, 2009, vol. 66, pр. 645–650.
https://doi.org/10.1176/appi.ajp.2009.09020279
PMid:19487400

7. Insel T., Cuthbert B., Garvey M., Heinssen R., Pine D.S., et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry, 2010, iss. 167, pр. 748–751.
https://doi.org/10.1176/appi.ajp.2010.09091379
PMid:20595427

8. Mikhaylova Ye. S., Chakhava V. O. Changes in the circadian rhythm of some physiological functions in depression. Zh. Nevropatol. i psikhiatr. [J. Neuropathol. and psychiatry], 1992, no. 1, pp. 95–99. (In Russ.).

9. Simonov P. V. Emotsional'nyy mozg [The emotional brain]. M., Nauka Publ., 1981, 215 p. (In Russ.).

10. Itil T. M., Arikan M. K., Itil K., Le Bars P., Eralp E. Clinical CEEG/DBM Findings with A New Antidepressant: Dothiepin. Integrative Psychiatry, 1992, vol. 8, no. 3, pp. 241–251.

11. Iznak A. F., Monosova A. Zh., Chayanov N. V. Topographical mapping of EEG responses to emotionally-loaded olfactory stimulation in normal subjects and in depressive patients. 19th CINP Congr., Satellite Symp. on Quantitative EEG&Brain Mapping in Psychopharmacol. Washington: DC, 1994, p. 16.

12. Pizzagalli D. A., Sherwood R. J., Henriques J. B., Davidson R. J. Frontal brain asymmetry and reward responsiveness: a source localization study. J. Psychol. Sci., 2005, vol. 16, pp. 805–813.
https://doi.org/10.1111/j.1467-9280.2005.01618.x
PMid:16181444

13. Segrave R. A., Thomson R. H., Cooper N. R., et al. Upper alpha activity during working memory processing reflects abnormal inhibition in major depression. J. Affect. Disord., 2010, vol. 127, pр. 191–198.
https://doi.org/10.1016/j.jad.2010.05.022
PMid:20579742

14. Grin-Yatsenko V. A., Baas I., Ponomarev V. A., Kropotov J. D. EEG power spectra at early stages of depressive disorders. J. Clin. Neurophysiol., 2009, vol. 26 (6). pp. 401–406.
https://doi.org/10.1097/WNP.0b013e3181c298fe
PMid:19952564

15. Mackey M. C. and Glass L. Oscillation and chaos in physiological control systems. Science, 1977, vol. 197, pp. 287–289.
https://doi.org/10.1126/science.267326
PMid:267326

16. Glass L. and Mackey M. C. Pathological physiological conditions resulting from instabilities in physiological control systems. Ann. NY. Acad. Sci., 1979, iss. 316, pp. 214–235.
https://doi.org/10.1111/j.1749-6632.1979.tb29471.x
PMid:288317

17. Bélair J., Glass L., van der Heiden U. & Milton J. Dynamical disease: Mathematical analysis of human illness. American Institute of Physics, Woodbury, NY, 1995, 215 p.

18. Nandrino J.-L., Pezard L., Martinerie J., et. al. Decrease of complexity in EEG as a symptom of depression. NeuroReport, 1994, vol. 5, pp. 528–530.
https://doi.org/10.1097/00001756-199401120-00042
PMid:8003689

19. Senon J. L., Sechter D., Richard D. (eds). Thérapeutique psychiatrique. Paris, Hermann, 1995, 985 p.

20. Thomasson N., Laurent P., BoyerP., Renault B., and Martinerie J. Nonlinear EEG Changes in a 48-Hour Cyclic Manic-Depressive Patient Nonlinear Dynamics. Psychology and Life Sciences, 2002, vol. 6, no. 3, pp. 259–267.
https://doi.org/10.1023/A:1015082611626

21. Fern R., Pettinalo S., Alicata F., Gracco S. D., Elia M. & Musumeci S. A. Correlation dimension of EEG slow wave activity during sleep in children and young adults. EEG & Clin. Neurophysiol., 1998, vol. 106, pp. 124–128.
https://doi.org/10.1016/S0013-4694(97)00163-6

22. Mekler A. A., Bolotova Ye. V. Features of calculating the value of the correlation dimension of the restored EEG attractor for children 4-6 years old. In the book: Slow oscillatory processes in the human body. Theoretical and applied aspects of nonlinear dynamics in fiziol. and medicine. / Ed. A. N. Fleischman. Novokuznetsk. 2005, pp. 152–153. (In Russ.).

23. Mykhailova E. Cognitive and neurophysiological markers of depression in children Focusing on Access, Quality and Humane Care. Madrid, 2014, p. 1074.

24. Red'ka I. V., Mayorov O. Yu. Nonlinear electroencephalographic correlates of auditory-motor integration in boys with acquired visual dysfunction. Fiziol. zhurnal [Physiol. Journal], 2015, vol. 61, no. 3, pp. 90–98. (In Ukr.).
https://doi.org/10.15407/fz61.03.090
PMid:26495742

25. Red'ka I. V., Mayorov O. Yu. Changes in nonlinear dynamics of girls' brain electrical activity in visual dysfunction. Visnyk Cherkas'koho universytetu [Bulletin of the Cherkasy Univer.], 2015, no. 2 (335), pp. 86–91. (In Ukr.).

26. Mayorov O. Yu., Mikhaylova E. A. Neurophysiological features of depression in children 7-11 years old. In the book: Depressiya u detey i podrostkov [Depression in children and adolescents]. Stil'-Izdat Publ., 2016, pp. 217–238. (In Russ.).

27. Mayorov O.Yu., Stepanchenko K.A. Optimization of diagnosis of tension headache in adolescents based on the analysis of nonlinear-dynamic indicators of EEG. Innovation. Ministry of Health of Ukraine, NAMSU, Ukrmedpatentinform. List of scientific (scientific and technical) products…, №249/1/14, Issue no. 1. Kyiv, 2015, pp. 227–228. (In Ukr.).

28. Fritzsche M., Mayorov O. Yu., Glukhov A. and oth. Anandamide included model-psychosis assessed by nonlinear EEG analysis. J. BMC Psychiatry (e-Jornal), 2003, 14 p.

29. Mayorov O. Yu., Fritzsche M., Kosidubova S.M., Glukhov A.B., Prognimak A.B., Timschenko L.N. New neurodiagnostics technology for brain research on the basis of multivariate and nonlinear (deterministic chaos) analysis of EEG. Proceedings of 2nd Eur. Congr. "Achievements in space medicine into health care practice and industry". Pabst Science Publ., Berlin, 2003, pp. 157–166.

30. Mayorov O. Yu. Computer EEG — past, present, future. Part 1. History of the development of kEEG, a review of special research methods. Zh. Klinical inform. i telemed. [Clinical informatics and telemedicine], 2004, vol. 1, no. 2, pp. 165-173. (In Russ.).

31. Mayorov O. Yu., Fritzsche M., Glukchov A. and oth. Disfunctional information processing during acute psychosis. 12th AEP Congress. Association of European Psychiatrists. Geneva. Switzerland. 2004, p. 78.

32. Mayorov O. Yu., Fenchenko V. N. Increase reliability of bioelectric activity (EEG, ECG and HRV) deterministic chaos researches by the nonlinear analysis methods. Zh. Klinical inform. i telemed. [Clinical informatics and telemedicine], 2009, vol. 5, no. 6., pp. 10–17. (In Russ.).

33. Mayorov O. Yu., Fenchenko V. N. On the identification of neurodynamic systems of the brain by the methods of multidimensional spectral analysis and deterministic chaos by EEG signals. Trudy Instituta kibernetiki NAN Ukrainy [Proc. of the Institute of Cybernetics of NAS of Ukraine], vol. 155, 2009, pp. 3–9. (In Russ.).

34. Mayorov O. Yu., Fenchenko V. N., Prognimak A. B., Fritzsche M., Fritzsche L. Application of EEG multidimensional spectral analysis and deterministic chaos to brain neurodynamic systems. Scharite, Berlin, 2010. Biosignal 2010: Intern. Biosignal Processing Conf. 2010, p. 75.

35. Mayorov O. Yu., Fenchenko V. N. Reliability of bioelectric activity (EEG, ECG and HRV) researches of the deterministic chaos by the nonlinear analysis methods. Book of Abstracts. 3rd Chaotic Modeling and Simulation. Intern. Conf., Chania Crete, Greece, 2010, p. 61.

36. Mayorov O. Yu., Fenchenko V. N. Method of detection of schizophrenic row disorders at early stages in patients from groups with "functional psychoses" basing on EEG scaling indicators. Zh. Klinical inform. i telemed. [Clinical informatics and telemedicine], 2018, vol. 13, no. 14, pp. 37-46. (In Russ.).
https://doi.org/10.31071/kit2018.14.05

37. Mayorov O. Yu., Fenchenko V. N. Searching for "neuromarkers" characteristic for pathologic changes in schizophrenia by using the scaling indices of the cerebral bioelectrical activity. Eur. J. Biomed. Informatics (EJBI), 2018, vol. 14, iss. 1, pp. 67–74.
https://doi.org/10.24105/ejbi.2018.14.1.11

38. Poznanski E. O., Grossman J. A., Buchsbaum Y., Banegas M., Freeman L., Gibbons R. Preliminary studies of the reliability and validity of the children's depression rating scale. J. Am. Acad. Child Psychiatry, 1984, vol. 23, pp. 191–197.
https://doi.org/10.1097/00004583-198403000-00011
PMid:6715741

39. Poznanski E. Mokros H. Children's Depression Rating Scale–Revised (CDRS-R) Los Angeles. WPS, 1996.

40. Myers K, Winters NC: Ten-year review of rating scales. II: Scales for internalizing disorders. J. Am. Acad. Child. Adolesc. Psychiatry, 2002, vol. 41, iss. 6, pp. 634-659.
https://doi.org/10.1097/00004583-200206000-00004
PMid:12049439

41. Mayes T. L., Bernstein I. H., Haley C. L., Kennard B. D. and Emslie G. J. Psychometric Properties of the Children's Depression Rating Scale–Revised in Adolescents. J. Child. Adolesc. Psychopharmacol. 2010, vol.20, no. 6, pp. 513–516.
https://doi.org/10.1089/cap.2010.0063
PMid:21186970 PMCid:PMC3003451

42. Yunkerov V. I., Grigor'yev S. G. Matematiko-statisticheskaya obrabotka dannykh meditsinskikh issledovaniy [Mathematical and statistical processing of medical research data]. VMedA Publ., 2002, 266 p. (In Russ.).

43. Mayorov O. Yu., Glukhov A. B., Fenchenko V. N., Prognimak A. B. Implementation of the displacement method by estimating the dimensions of the attractor axes from a one-dimensional realization of the dynamic system of the brain. Trudy Instituta kibernetiki NAN Ukrainy [Proc. of the Institute of Cybernetics NAS of Ukraine]. 2007, no. 153, pp. 3–11. (In Russ.).

44. Grassberger P., Procaccia I. Measuring the strangeness of strange attractors. Physica D 9, 1983, pp.189–208.
https://doi.org/10.1016/0167-2789(83)90298-1

45. Kantz H. and Schrieber T., Nonlinear Time Series Analysis. NY. Cambridge University Press, 2000, 304 р.


Full-text version http://kit-journal.com.ua/en/viewer_en.html?doc/2019_15/002.pdf