Internet 
Українська  English  Русский  

DOI: https://doi.org/10.31071/kit2017.13.10


Inventory reference

ISSN 1812-7231 Klin.inform.telemed. Volume 12, Issue 13, 2017, Pages 75–82


Author(s)

K. V. Nasedkin, V. V. Fedotenko, O. G. Viunytskyi, V. I. Shulgin


Institution(s)

National Aerospace University "KhAI", Kharkiv


Article title

Ambulatory fetal ECG monitoring


Abstract (resume)

Introduction. Existing diagnostic technologies and systems are designed to monitor the health of adults and children, and there are virtually no technologies and systems designed to jointly monitor the condition of the mother and fetus during pregnancy. Although future human health, including the costs of its supporting throughout the life, are laid down in the womb.

Objective. Evaluation of the possibility of detection and diagnosis of fetal arrhythmias using ambulatory (Holter) monitoring technology of the fetal electrocardiogram.

Results. The developed devices for recording and wireless transmission of signals observed on the abdominal surface of a pregnant woman, as well as algorithms for processing these signals for the purpose of extraction and clinical analysis of FECG. A retrospective analysis of abdominal records and fetal ultrasound examination results performed to assess the possibility of diagnosing various cardiac rhythm disorders.

Conclusions. Non-invasive fetal electrocardiography (NI-FECG) provides reliable and intuitive information to detect or clarify the diagnosis of fetal arrhythmias (FA). The main advantages of the method are cheapness, high accuracy of measurements of cardiac fetal indexes in comparison with traditional ultrasound, the possibility of conducting an out-patient examination and remote transmission of the examination results to the diagnostic center.


Keywords

fetal abdominal electrocardiography, NI-FECG, holter monitor, fetal arrhythmias.


References

1. Donofrio M., Moon-Grady A., Hornberger L. et. al. Diagnosis and Treatment of Fetal Cardiac Disease. Scientific Statement From the American Heart Association. 2014, vol. 129, pp. 2183-2242.
https://doi.org/10.1161/01.cir.0000437597.44550.5d
PMid:24763516

2. Srinivasan S., Strasburger J., Overview of fetal arrhythmias. Curr. Opin. Pediatr. 2008, vol. 20, iss. 5, pp. 522–531.
10.1097/MOP.0b013e32830f93ec
PMid:18781114
PMCid:PMC3326657

3. Wacker-Gussmann, H. Paulsen, K. Stingl, J. Braendle, R. Goelz. Atrioventricular Conduction Delay in the Second Trimester Measured by Fetal Magnetocardiography. Journal of Immunology. 2014.
10.1155/2014/753953
PMid:24741622
PMCid:PMC3987975

4. Cuneo B., Strasburger J., Horigome S. Yu, H., Hosono T., Kandori A., Wakai R. In utero diagnosis of long QT syndrome by magnetocardiography. Circulation, 2013, vol. 128, iss. 20, pp. 2183-2191.
https://doi.org/10.1161/CIRCULATIONAHA.113.004840
PMid:24218437
PMCid:PMC3831174

5. Behar J. Extraction of clinical information from the non-invasive fetal electrocardiogram. A thesis submitted for the degree of Doctor of Philosophy Michaelmas, 2014. 233 p.

6. Behar J., Zhu T., Oster J., Sameni R., Wolfberg A. J., Clifford G. D. Evaluation of the fetal QT interval using non-invasive fetal ECG technology. Institute of Physics and Engineering in Medicine. 2016, pp. 1392–1403.
https://doi.org/10.1088/0967-3334/37/9/1392
PMid:27480078

7. Graatsma E., Jacod B., van Egmond L., Mulder E., Visser G. Fetal electrocardiography: feasibility of long-term fetal heart rate recordings. BJOG, 2009, vol. 116, pp. 334–338.
https://doi.org/10.1111/j.1471-0528.2008.01951.x
PMid:19076966

8. Clifford G., Sameni R., Ward J., et al. Clinically accurate fetal ECG parameters acquired from maternal abdominal sensors. Am. J. Obstet. Gynecol., 2011, vol. 205, iss. 47
10.1016/j.ajog.2011.02.066
PMid:2151456
PMCid:PMC3145045

9. Behar J., Andreotti F., Zaunseder S. et al. A practical guide to non-invasive foetal electrocardiogram extraction and analysis. Physiol. 2016 vol. 37, iss. 5, pp. 1–35.
10.1088/0967-3334/37/5/R1
PMid:27067431

10. Zaderykhin O., Shulgin V. Blind Signal Separation Using Prior Information. Conf. Modern Problems of Radio Engineering, Telecommunications, and Computer Science, 2010, 48 p.

11. Zaderykhin O., Shulgin V., Tokariev A. Blind signal separation of fetal ECG using prior information. In Proc. of the Intern. Congress on Electrocardiology, 2010.
https://doi.org/10.1016/j.jelectrocard.2010.12.101

12. Shulgin V., Shepel O. Computer Diagnostic System for Fetal Monitoring During Pregnancy. Proc. of the Intern. Conf. TCSET "Modern Problems of Radio Engineering, Telecommunications, and Computer Science". 2014, pp. 709 – 711.

13. Shulgin V., Viunytskyi O. Signal Processing Techniques for Fetal Electrocardiogram Extraction and Analysis. Proc. of 37th Intern. Conf. on Electronics and Nanotechnology (ELNANO-2017), 2017, pp. 325-328.
https://doi.org/10.1109/ELNANO.2017.7939772

14. Shulgin V., Viunytskyi O. Fetal ECG and Heart Rhythm analyzing using BabyCard. Proc. of Signal Processing Symposium, 2017, pp. 21-24.
https://doi.org/10.1109/SPS.2017.8053640

15. Behar J., Lakhno I., Ostras O., Andreotti F. Shulgin V. The use of non-invasive fetal electrocardiography in diagnosing second-degree fetal atrioventricular block. BioMed Central, Maternal Health, Neonatology and Perinatology, 2017. doi: 10.1186/s40748-017-0053-1.
https://doi.org/10.1186/s40748-017-0053-1
PMid:28794892
PMCid:PMC5541729


Full-text version http://kit-journal.com.ua/en/viewer_en.html?doc/2017_13/008.pdf