в Інтернеті 
Українська  English  Русский  

DOI: https://doi.org/10.31071/kit2019.15.01


Опис-посилання

ISSN 1812-7231 Klin.inform.telemed. Volume 14, Issue 15, 2019, Pages 13-34


Автор(и)

І. В. Редька


Установа(ви)

Харківська медична академія післядипломної освіти МОЗ України

Харківський національний університет імені В. Н. Каразіна МОН України


Назва статті

Сучасні підходи до виявлення і видалення артефактів з ЕЕГ-сигналів. Огляд


Анотація (резюме)

Вступ. Виявлення артефактів з подальшим їх видаленням з даних ЕЕГ є важливою проблемою в нейрофізіології, оскільки характеристики артефактних фрагментів прекриваются з характеристиками істинної активності головного мозку.

Мета — огляд існуючих математичних підходів до розпізнавання і видалення артефактів з ЕЕГ-сигналів.

Результати. Існують методи, засновані на статистичному відхиленні артефактів, адаптивної фільтрації, регресії, сліпому розділення джерел, емпіричної модової декомпозиції, вейвлет-перетворення та їх комбінації, кожен з яких має свої переваги і недоліки. Тим не менш, не існує універсального алгоритму для всіх типів артефактів. Першочерговими критеріями у виборі алгоритму видалення артефактів є наявність опорного каналу, спосіб (автоматизований або експертний) і режим (потоковий або пакетний) виявлення/видалення артефактів. Досить складно порівнювати різні методи відхилення артефактів через використання різних метрик, заснованих на здатності видаляти артефакти та ступені спотворення вихідного сигналу.

Висновок. Аналіз незалежних компонентів є найбільш часто використовуваним в нейрофізіологічних дослідженнях. Пріоритетним напрямком є розробка гібридних методів видалення фізіологічних артефактів. Доцільною є триетапна перевірка ефективності нового алгоритму виявлення/видалення артефактів.


Ключові слова

ЕЕГ, артефакт, регресія, адаптивна фільтрація, сліпе розділення джерел, емпірична модова декомпозиція, вейвлет-перетворення


Список літератури

1. Hammond D. C., Gunkelman J. The art of artifacting. USA, Salt Lake City, Utah, Society for Neuronal Regulation, 2001, 111 p.

2. Nunez P. L., Srinivasan R. Electric Fields of the Brain. UK, Oxford Univ. Press, 2006, 611 р.

3. Klados M. A., Papadelis C., Bamidis P. D., Braun C. REG-ICA: A hybrid methodology combining blind source separation and regression techniques for the rejection of ocular artifacts. Biomed. Signal Process. Control., 2011, vol. 6, no. 3, pp. 291–300.
https://doi.org/10.1016/j.bspc.2011.02.001

4. Nicolas-Alonso L. F., Gomez-Gil J. Brain computer interfaces, a review. Sensors, 2012, vol. 12, no. 2, pp. 1211–1279.
https://doi.org/10.3390/s120201211

5. Ochoa C. J., Polich J. P300 and blink instructions. Clin. Neurophysiol., 2000, vol. 111, no. 1, pp. 93–98.
https://doi.org/10.1016/s1388-2457(99)00209-6

6. Vergult A., De Clercq W., Palmini A., Vanrumste B., Dupont P., Van Huffel S. and Van Paesschen W. Improving the Interpretation of Ictal Scalp EEG: BSS–CCA Algorithm for Muscle Artifact Removal. Epilepsia, 2007, vol. 48, no. 5, pp. 950–958.
https://doi.org/10.1111/j.1528-1167.2007.01031.x

7. Keil A., Debener S., Gratton G., Junghöfer M., Kappenman E. S., Luck S. J., Luu P., Miller G. A., Yee C. M. Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiol., 2014, vol. 51, no. 1, pp. 1–21.
https://doi.org/10.1111/psyp.12147

8. Гуляев С. А., Архипенко И. В. Артефакты при электроенцефалографическом исследовании: выявление и дифференциальный диагноз. Русский журн. детской неврол., 2012, т. VII, вып. 3, сс. 3–16.

9. Jiang X., Bian G. B., Tian Z. Removal of Artifacts from EEG Signals: A Review. Sensors (Basel), 2019, vol. 19, no. 5, article 987, 18 p.
https://doi.org/10.3390/s19050987

10. Stone D. B., Tamburro G., Fiedler P., Haueisen J., Comani S. Automatic Removal of Physiological Artifacts in EEG: The Optimized Fingerprint Method for Sports Science Applications. Frontiers in human neuroscience, 2018, vol. 12, article 96, 15 p.
https://doi.org/10.3389/fnhum.2018.00096

11. Islam K., Rastegarnia A., Yang Zhi., Methods for artifact detection and removal from scalp EEG: A review, Neurophysiol. Clin./Clin. Neurophysiol., 2016, vol. 46, iss. 4–5, pp. 287–305.
https://doi.org/10.1016/j.neucli.2016.07.002

12. Tereshchenko E. P., Ponomarev V. A., Kropotov Yu. D., Müller A. Comparative efficiencies of different methods for removing blink artifacts in analyzing quantitativ electroencephalogram and event-related potentials. Human Physiology, 2009, vol. 35, no. 2, pp. 241–247.
https://doi.org/10.1134/S0362119709020157

13. Romero S., Maсanas M. A., Barbanoj M. J. Ocular reduction in EEG signals based on adaptive filtering, regression and blind source separation. Ann. Biomed. Eng., 2009, vol. 37, no. 1, pp. 176–191.
https://doi.org/10.1007/s10439-008-9589-6

14. Shoker L., Sanei S., Chambers J. Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm. IEEE Signal Process. Letters, 2005, vol. 12, no. 10, pp. 721–724.
https://doi.org/10.1109/LSP.2005.855539

15. Wallstrom G. L., Kass R. E., Miller A., Cohn J. F., Fox N. A. Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods. Int. J. Psychophysiol., 2004, vol. 53, no. 2, pp. 105–119.
https://doi.org/10.1016/j.ijpsycho.2004.03.007

16. Nolan H., Whelan R. Reilly R. B. FASTER: fully automated statistical thresholding for EEG artifact rejection. J. Neurosci. Methods, 2010, vol. 192, pp. 152–162.
https://doi.org/10.1016/j.jneumeth.2010.07.015

17. Mognon A., Jovicich J., Bruzzone L., Buiatti M. ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiol., 2011, vol. 48, no. 2, pp. 229–240.
https://doi.org/10.1111/j.1469-8986.2010.01061.x

18. Меринов П. А., Беляев М. Г. Влияние автоматических методов очистки ЭЭГ от артефактов на точность классификации. Cб. трудов 39-й междисцип. школы-конф. НППИ РАН "Информационные технологии и системы 2015", 2015, cc. 313–328.

19. Tuyisenge V., Trebaul L., Bhattacharjee M., Chanteloup-Forêt B., Saubat-Guigui C., Mоndruţă I., Rheims S., Maillard L., Kahane P., Taussig D., David O. Automatic bad channel detection in intracranial electroencephalographic recordings using ensemble machine learning. Clin Neurophysiol., 2018, vol. 129, no. 3, pp. 548–554.
https://doi.org/10.1016/j.clinph.2017.12.013

20. Gabard-Durnam L. J., Mendez Leal A. S., Wilkinson C. L., Levin A. R. The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized Processing Software for Developmental and High-Artifact Data. Front Neurosci., 2018, vol. 12, article 97, 24 p.
https://doi.org/10.3389/fnins.2018.00097

21. Tamburro G., Stone D. B., Comani S. Automatic Removal of Cardiac Interference (ARCI): A New Approach for EEG Data. Front Neurosci., 2019, vol. 13, article 441, 17 p.
https://doi.org/10.3389/fnins.2019.00441

22. Dammers J., Schiek M., Boers F., Silex C., Zvyagintsev M., Pietrzyk U., Mathiak K. Integration of Amplitude and Phase Statistics for Complete Artifact Removal in Independent Components of Neuromagnetic Recordings. IEEE Trans actions on Biomed. Eng., 2008б vol. 55, no. 10, pp. 2353–2362.
https://doi.org/10.1109/TBME.2008.926677

23. Delorme A., Sejnowski T., Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 2006, vol. 34, no. 4, pp. 1443–1449.
https://doi.org/10.1016/j.neuroimage.2006.11.004

24. Greco A., Mammone N., Morabito F. C., Versaci M. Kurtosis, Renyi's entropy and independent component scalp maps for the automatic artifact rejection from EEG data. Signal Processing. Intern. J. of Biomed. and Biol. Eng., 2008, vol. 2, no. 9, pp. 344–348.
https://doi.org/10.5281/zenodo.1059427

25. Escudero J., Hornero R., Abásolo D. Fernández A. Quantitative evaluation of artifact removal in real magnetoencephalogram signals with blind source separation. Ann. Biomed. Eng., 2011, vol. 39, no. 8, pp. 2274–2286.
https://doi.org/10.1007/s10439-011-0312-7

26. Urigüen J. A., Garcia-Zapirain B., Artieda J., Iriarte J., Valencia M. Comparison of background EEG activity of different groups of patients with idiopathic epilepsy using Shannon spectral entropy and cluster-based permutation statistical testing. PLoS ONE, 2017,, vol. 12, no. 9, article e0184044, 15 p.
https://doi.org/10.1371/journal.pone.0184044

27. Wu S.-D., Wu C.-W., Lin S.-G., Wang C.-C., Lee K.-Y. Time series analysis using composite multiscale entropy. Entropy, 2013, vol. 15, no. 3, pp. 1069–1084.
https://doi.org/10.3390/e15031069

28. Bosl W., Tierney A., Tager-Flusberg H., Nelson H. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med., 2011, vol. 9, article 18, 16 p.
https://doi.org/10.1186/1741-7015-9-18

29. Mannan M. M. N., Kamran M. A., Jeong M. Y. Identification and Removal of Physiological Artifacts from Electroencephalogram Signals: A Review. IEEE Access, 2018. vol. 6, pp. 30630–30652
https://doi.org/10.1109/ACCESS.2018.2842082

30. Picton T. W., Van Roon P., Armilio M. L., Berg P., Ille N., Scherg M. The correction of ocular artifacts: a topographic perspective. Clin. Neurophysiol., 2000, vol. 111, no. 1, pp. 53–65.
https://doi.org/10.1016/S1388-2457(99)00227-8

31. Liu W., Park I., Wang Y., Principe J. C. Extended kernel recursive least squares algorithm. IEEE Trans. Signal. Process., 2009, vol. 57, no. 10, pp. 3801–3814.
https://doi.org/10.1109/TSP.2009.2022007

32. Mannan M. M., Jeong M. Y., Kamran M. A. Hybrid ICA-Regression: Automatic Identification and Removal of Ocular Artifacts from Electroencephalographic Signals. Frontiers in human neurosci., 2016, vol. 10, article 193, 17 p.
https://doi.org/10.3389/fnhum.2016.00193

33. Поллер Б. В., Щетинин Ю. И., Орлов И. С. Адаптивная цифровая фильтрация сигналов в системах анализа электроэнцефалограмм. Научный вестник НГТУ, 2013, т. 50, №1 , cc. 31–38.

34. Correa A. G., Laciar E., Patiño H. D., Valentinuzzi M. E. Artifact removal from EEG signals using adaptive filters in cascade. J. Physics: Conference Series, 2007, vol. 90, article 012081, 10 p.
https://doi.org/10.1088/1742-6596/90/1/012081

35. Рангайян Р. М. Анализ биомедицинских сигналов. Практический подход. Пер. с англ. под ред. А. П. Немирко. М., ФИЗМАТЛИТ, 2010. 440 с.

36. Дроботькo Д. В., Шевченко А. И., Дроботько В. Ф., Качур И. В. Неавтономное обнаружение выбросов и очистка сигналов мониторинга внутричерепного давления. Искусственный интеллект, 2013, № 3, cc. 495–506.

37. Ferdous J., Ali M. S. A Comparison of Wiener and Kalman Filters for the Artifact Suppression from EEG Signal. Intern. J. of Sci. and Res., 2017, vol. 6, iss. 4, pp. 2029–2035.

38. Fitzgibbon S., Powers D., Pope K., Clark C. Removal of EEG Noise and Artifact Using Blind Source Separation. J. Clin. Neurophysiol., 2007, vol. 24. no. 3, pp. 232–243.
https://doi.org/10.1097/WNP.0b013e3180556926

39. Berg P., Scherg M. Dipole models of eye activity and its application to the removal of eye artifacts from the EEG ad MEG. Clin. Physiol. Meas., 1991, vol. 12, no. Suppl. A, pp. 49–54.
https://doi.org/10.1088/0143-0815/12/a/010

40. Urigüen J. A., Garcia-Zapirain B. EEG artifact removal – stateof-the-art and guidelines. J. Neural Eng., 2015, vol. 12, no. 3, article 031001, 44 p.
https://doi.org/10.1088/1741-2560/12/3/031001

41. Кицун П. Г. Використання методу незалежних компонент для автоматичного видалення артефактів ЕЕГ, пов'язаних з рухами очей. Вісник Нац. Техн. універ. України "КПІ". Серія: Радіотехніка. Радіоапаратобудування, 2016, вип. 65, cc. 99–107.

42. Abdullah A. A., Zhang C. Z., Abdullah A., Lian, S. Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone's BSS Algorithm. Math. Probl. in Eng., 2014, vol. 2014, article ID 324750, 25 p.
https://doi.org/10.1155/2014/324750

43. Clercq W. D., Vergult A., Vanrumste B., Paesschen W. V., Huffel S. V. Canonical Correlation Analysis Applied to Remove Muscle Artifacts from the Electroencephalogram. IEEE Trans. on Biomed. Eng., 2006, vol. 53, no. 12 (Pt 1), pp. 2583–2587.
https://doi.org/10.1109/TBME.2006.879459

44. Gao J., Zheng C., Wang, P. Online removal of muscle artifact from electroencephalogram signals based on canonical correlation analysis Clin. EEG Neurosci., 2010. vol. 41, no. 1, pp. 53–59.
https://doi.org/10.1177/155005941004100111

45. Hara S., Kawahara Y., Washio T., von Bünau P., Tokunaga T. Separation of stationary and non-stationary sources with a generalized eigenvalue problem. Neural Netw., 2012, vol. 33, pp. 7–20.
https://doi.org/10.1016/j.neunet.2012.04.001

46. Von Bünau P., Meinecke F. C., Király F. C., Mьller K. R. Finding stationary subspaces in multivariate time series. Phys. Rev. Lett., 2009, vol. 103, no. 21, pp. 214101–214105.
https://doi.org/10.1103/PhysRevLett.103.214101

47. Safieddine D., Kachenoura A., Albera L., Birot G., Karfoul Ah., Pasnicu A., Biraben A., Wendling F., Senhadji L., Merlet I. Removal of muscle artifact from EEG data: comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches. EURASIP J. Adv. Signal Process., 2012, article 127.
https://doi.org/10.1186/1687-6180-2012-127

48. Tsai F.-F., Fan S.-Z., Lin Y.-S., Huang N. E., Yeh J.-R. Investigating Power Density and the Degree of Nonlinearity in Intrinsic Components of Anesthesia EEG by the Hilbert-Huang Transform: An Example Using Ketamine and Alfentanil. PLoS ONE, 2016, vol. 11, no. 12, article e0168108, 16 p.
https://doi.org/10.1371/journal.pone.0168108

49. Huang N. E., Shen Z., Long S. R., Wu M. C., Shih H. H., Zheng Q., Yen N.-C., Tung C. C., Liu H. H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci., 1998, vol. 454, iss. 1971, pp. 903–995.
https://doi.org/10.1098/rspa.1998.0193

50. Rashed-Al-Mahfuz M., Islam M. R., Hirose K., Molla M. K. Artifact suppression and analysis of brain activities with electroencephalography signals. Neural Regen Res. 2013, vol. 8, no. 16, pp. 1500–1513.
https://doi.org/10.3969/j.issn.1673-5374.2013.16.007

51. Roy V., Shukla S., Shukla P. K., Rawat P. Gaussian Elimination-Based Novel Canonical Correlation Analysis Method for EEG Motion Artifact Removal. J Healthc Eng., 2017, article 9674712, 11 p.
https://doi.org/10.1155/2017/9674712

52. Peng H., Hu B., Shi Q., Ratcliffe M., Zhao Q., Qi Y., Gao G. Removal of ocular artifacts in EEG–an improved approach combining DWT and ANC for portable applications. IEEE J. Biomed. Health Inform., 2013, vol. 17, no. 3, pp. 600–607.
https://doi.org/10.1109/JBHI.2013.2253614

53. Bono V., Das S., Jamal W., Maharatna K. Hybrid wavelet and EMD/ICA approach for artifact suppression in pervasive EEG. J. Neurosci. Methods, 2016, vol. 267, pp. 89–107.
https://doi.org/10.1016/j.jneumeth.2016.04.006

54. Chen X., Liu A., Chiang J., Wang Z. J., McKeown M. J., Ward R. K. Removing muscle artifacts from EEG data: Multichannel or single-channel techniques? IEEE Sensors J., 2016, vol. 16, no. 7, pp. 1986–1997.
https://doi.org/10.1109/JSEN.2015.2506982

55. Ghandeharion H., Erfanian A. A fully automatic ocular artifact suppression from EEG data using higher order statistics: improved performance by wavelet analysis. Med. Eng. Phys., 2010, vol. 32, no. 7, pp. 720–729.

56. Sweeney K. T., Ward T. E., McLoone S. F. Artifact removal in physiological signals — practices and possibilities. IEEE Trans. Inf. Technol. Biomed., 2012, vol. 16, no. 3, pp. 488–500.
https://doi.org/10.1109/TITB.2012.2188536

57. Croft R. J., Barry R. J. Removal of ocular artifacts from the EEG: a review. J. Clin. Neurophysiol., 2000, vol. 30, no. 1, pp. 5–19.
https://doi.org/10.1016/s0987-7053(00)00055-1

58. Waser M., Garn H. Removing cardiac interference from the electroencephalogram using a modified Pan-Tompkins algorithm and linear regression. In Proc. of the 35th Ann. Intern. Conf. of the IEEE Eng. in Medicine and Biol. Society (EMBC'13), 2013, pp. 2028–2031.
https://doi.org/10.1109/EMBC.2013.6609929

59. Kanoga S., Kanemura A., Asoh H. Multi-scale dictionary learning for ocular artifact reduction from single-channel electroencephalograms. Neurocomputing, 2019, vol. 347, pp. 240–250.
https://doi.org/10.1016/j.neucom.2019.02.060

60. Jung T.-P., Humphries C., Lee T.-W., Makeig S., McKeown M. J., Iragui V., Sejnowski T. J. Removing electroencephalographic artifacts: comparison between ICA and PCA. Neural Networks for Signal Process. VIII. Proc. of the 1998 IEEE Signal Pro cess. Society Workshop (Cat. No.98TH8378), Cambridge, 1998, pp. 63–72.
https://doi.org/10.1109/NNSP.1998.710633

61. Mneimneh M., Yaz E. E., Johnson M. T., & Povinelli R. J. An adaptive Kalman filter for removing baseline wandering in ECG signals. Computers in Cardiol., 2006, vol. 33, pp. 253–256.

62. Morbidi F., Garulli A., Prattichizzo D., Rizzo C., Rossi S. Application of Kalman filter to remove TMS-induced artifacts from EEG recordings. IEEE Transactions on control system technology, 2008, vol. 16, no. 6, pp. 1360–1366.
https://doi.org/10.1109/TCST.2008.921814

63. Somers B., Francart T., Bertrand A. A generic EEG artifact removal algorithm based on the multichannel Wiener filter. J. of Neural Eng., 2018, vol. 15, no. 3, article 036007, 12 p.
https://doi.org/10.1088/1741-2552/aaac92

64. Nandi Sh., Ferdous J. Comparison between DWT and SWT Algorithms for the Suppression of Muscular Artifact from ictal EEG. Intern. J. of Comput. Sci. and Inform. Security, 2019, vol. 17, no. 6, pp. 1–7.

65. Navarro X., Porée F., Beuchée A., Carrault G. Denoising preterm EEG by signal decomposition and adaptive filtering: A comparative study. Med. Eng. Phys., 2015. vol. 37, no. 3, pp. 315–320.

66. Mahajan R., Morshed B. I. Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy kurtosis and wavelet-ICA. IEEE J. Biomed. Health Informat., 2015, vol. 19, no. 1, pp. 158–165.
https://doi.org/10.1109/JBHI.2014.2333010

67. Raghavendra B., Dutt D. N. Wavelet enhanced CCA for minimization of ocular and muscle artifacts in EEG. World Acad. Sci. Eng. Technol., 2011, vol. 57, no. 6, pp. 1027–1032.

68. Al-Qazzaz N. K., Ali S. H. B. M., Ahmad S. A., Islam M. S., Escudero J. Automatic artifact removal in EEG of normal and demented individuals using ICA-WT during working memory tasks. Sensors, 2017, vol. 17, no. 6, E1326. – 25 p.
https://doi.org/10.3390/s17061326

69. Chen X., Liu A., Chen Q., Liu Y., Zou L., Mckeown M. J. Simultaneous ocular and muscle artifact removal from EEG data by exploiting diverse statistics. Comput. Biol. Med., 2017, vol. 88, iss. C, pp. 1–10.
https://doi.org/10.1016/j.compbiomed.2017.06.013

70. Lindsen J. P., Bhattacharya J. Correction of blink artifacts using independent component analysis and empirical mode decomposition. Psychophysiol., 2010. vol. 47, no. 5, pp. 955–960.
https://doi.org/10.1111/j.1469-8986.2010.00995.x

71. Wang G., Teng C., Li K., Zhang Z., Yan X. The removal of EOG artifacts from EEG signals using independent component analysis and multivariate empirical mode decomposition. IEEE J. Biomed. Health Informat., 2016. vol. 20, no. 5, pp. 1301–1308.
https://doi.org/10.1109/JBHI.2015.2450196

72. Mowla M. R., Ng S. C., Zilany M. S. A., Paramesran R. Artifactsmatched blind source separation and wavelet transform for multichannel EEG denoising. Biomed. Signal Process. and Control, 2015, vol. 22, pp. 111–118.
https://doi.org/10.1016/j.bspc.2015.06.009

73. Mingai L., Shuoda G., Guoyu Z., Yanjun S., Jinfu Y., Removing ocular artifacts from mixed EEG signals with FastKICA and DWT. J. Intell. Fuzzy Syst., 2015, vol. 28, no. 6, pp. 2851–2861.
https://doi.org/10.3233/IFS-151564

74. Zeng K., Chen D., Ouyang G., Wang L., Li X., Li X., An EEMD-ICA approach to enhancing artifact rejection for noisy multivariate neural data. IEEE Trans. Neural Syst. Rehabil. Eng., 2016, vol. 24, no. 6, pp. 630–638.
https://doi.org/10.1109/TNSRE.2015.2496334

75. Patel R., Sengottuvel S., Janawadkar M. P., Gireesan K., Radhakrishnan T., Mariyappa N., Ocular artifact suppression from EEG using ensemble empirical mode decomposition with principal component analysis. Comput. Elect. Eng., 2016, vol. 54, pp. 78–86.
https://doi.org/10.1016/j.compeleceng.2015.08.019

76. Chen X., He C., Peng H. Removal of Muscle Artifacts from Single-Channel EEG Based on Ensemble Empirical Mode Decomposition and Multiset Canonical Correlation Analysis. J. of Appl. Math., 2014, vol. 2014, no. 261347, pp.1–10.
https://doi.org/10.1155/2014/261347

77. Chen X., Liu A., Peng H., Ward R. K. A preliminary study of muscular artifact cancellation in single-channel EEG. Sensors, 2014. vol. 14, no. 10, pp. 18370–18389.
https://doi.org/10.3390/s141018370

78. Shahabi H., Moghimi S., & Zamiri-Jafarian H. EEG eye blink artifact removal by EOG modeling and Kalman filter. 5th Intern. Conf. on BioMed.Eng. and Informat., 2012, pp. 496–500.

79. Castellanos N. P., Makarov V. A. Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis. J. Neurosci. Methods, 2006, vol. 158 (2), pp. 300–312.
https://doi.org/10.1016/j.jneumeth.2006.05.033

80. Islam M. K., Rastegarnia A., Yang Z. A Wavelet-Based Artifact Reduction from Scalp EEG for Epileptic Seizure Detection. Biomed. and Health Informat., 2015, vol. 99, pp.1–12.
https://doi.org/10.1109/JBHI.2015.2457093

81. Sweeney K. T., McLoone S. F., Ward T. E. The Use of Ensemble Empirical Mode Decomposition with Canonical Correlation Analysis as a Novel Artifact Removal Technique. Biomed. Eng., 2013, vol. 60, no. 1, pp. 97–105.
https://doi.org/10.1109/TBME.2012.2225427

82. Sahul J. B. Z., Widrow B., Guilleminault C. EKG artifact cancellation from sleep EEG using adaptive filtering, Sleep Res. A, 1995, vol. 24, pp. 486.

83. Devuyst S., Dutoit T., Stenuit P., Kerkhofs M., Stanus E. Removal of ECG artifacts from EEG using a modified independent component analysis approach. EURASIP J. Adv. Signal Process., 2008, vol. 2008, no. 1, pp. 5204–5207.
https://doi.org/10.1109/IEMBS.2008.4650387

84. Tong S., Bezerianos A., Paul J., Zhu Y., Thakor N. Removal of ECG interference from the EEG recordings in small animals using independent component analysis. J. Neurosci. Methods, 2001, vol. 108, no. 1, pp. 11–17.
https://doi.org/10.1016/s0165-0270(01)00366-1

85. Hamaneh M. B., Chitravas N., Kaiboriboon K., Lhatoo S. D., Loparo K. A. Automated removal of EKG artifact from EEG data using independent component analysis and continuous wavelet transformation. IEEE Trans. Biomed. Eng., 2014, vol. 61, no. 6, pp. 1634–1641.
https://doi.org/10.1109/TBME.2013.2295173

86. Khorasani A., Shalchyan V., Daliri M. R. Adaptive Artifact Removal From Intracortical Channels for Accurate Decoding of a Force Signal in Freely Moving Rats. Front Neurosci. 2019, vol. 13, article 350, 12 p.
https://doi.org/10.3389/fnins.2019.00350

87. Akhtar M. T., Jung T.-P., Makeig S., Cauwenberghs G. Recur sive independent component analysis for online blind source separation. IEEE Circuits and Systems (ISCAS), 2012, pp. 2813–2816.
https://doi.org/10.1109/iscas.2012.6271896

88. Huang K. J., Liao J. C., Shih W. Y., Feng C. W., Chang J. C., Chou C. C., Fang W. C. A Realtime Processing flow for ICA based EEG Acquisition system with Eyeblink Artifact Elimination. Signal Process. Systems (SiPS), 2013, pp. 237–240.
https://doi.org/10.1109/SiPS.2013.6674511

89. Daly I., Scherer R., Billinger M., Müller-Putz G. FORCe: Fully Online and Automated Artifact Removal for Brain-Computer Interfacing. IEEE Transactions on Neural Syst. and Rehabilit. Eng., 2015, vol. 23, no. 5, pp. 725–736.
https://doi.org/10.1109/TNSRE.2014.2346621

90. Khatun S., Mahajan R., Morshed B. I. Comparative analysis of wavelet based approaches for reliable removal of ocular artifacts from single channel EEG. In 2015 IEEE Intern. Conf. on Electro/Inform. Technol., EIT 2015, pp. 335–340.
https://doi.org/10.1109/EIT.2015.7293364


Повнотекстова версія http://kit-journal.com.ua/uk/viewer_uk.html?doc/2019_15/001.pdf